April 13, 2024

Multistep topological transitions between meron and skyrmion crystals in a centrosymmetric magnet

  • Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. two17031 (2017).

    CAS ADS Google Scholar Article

  • Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnology. 8899–911 (2013).

    CAS Article PubMed ADS Google Scholar

  • Göbel, B., Mertig, I. & Tretiakov, O.A. Beyond skyrmions: review and prospects for alternative magnetic quasiparticles. Physical. Representative. 8951–28 (2021).

    MathSciNet ADS Google Scholar Article

  • Yu, XZ et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 56495–98 (2018).

    CAS Article PubMed ADS Google Scholar

  • Lin, S.-Z. and others. Fractionation of Skyrmion and merons in chiral magnets with easy in-plane anisotropy. Physical. Rev. 91224407 (2015).

    ADS Google Scholar Article

  • Das, S. et al. Observation of polar skyrmions at room temperature. Nature 568368–372 (2019).

    CAS Article PubMed ADS Google Scholar

  • Nych, A. et al. Spontaneous and dynamic formation of half-skyrmions in a chiral liquid crystal film. Nat. Physics. 131215–1220 (2017).

    CAS Google Scholar Article

  • Ackerman, P.J., Boyle, T. & Smalyukh, II Writhing motion of baby skyrmions in nematic fluids. Nat. Com. 8673 (2017).

    ADS Google Scholar Article

  • Tai, J.-SB & Smalyukh, I. Three-dimensional adaptive knot crystals. Science 3651449–1453 (2019).

    CAS Article PubMed ADS Google Scholar

  • Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets. Nat. Physics. 15655–659 (2019).

    CAS Google Scholar Article

  • Göbel, B. et al. Magnetic bimers as skyrmion analogues in in-plane magnets. Physical. Rev. 99060407(R) (2019).

    ADS Google Scholar Article

  • Tokura, Y. & Kanazawa, N. Magnetic skyrmion materials. Chemical. Rev. 1212857–2897 (2021).

    CAS Article PubMed Google Scholar

  • Rößler, UK et al. Spontaneous skyrmion ground states in magnetic metals. Nature 442797–801 (2006).

    Article PubMed ADS Google Scholar

  • Mühlbauer, S. et al. Skyrmion structure in a chiral magnet. Science 323915–919 (2009).

    Article PubMed ADS Google Scholar

  • Yu, XZ et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465901–904 (2010).

    CAS Article PubMed ADS Google Scholar

  • Koshibae, W. & Nagaosa, N. Berry curvature and dynamics of a magnetic bubble. New J. Phys. 18045007 (2016).

    ADS Google Scholar Article

  • Seki, S., Yu, X.Z., Ishiwata, S. & Tokura, Y. Observation of skyrmions in a multiferroic material. Science 336198 (2012).

    CAS Article PubMed ADS Google Scholar

  • Tokunaga, Y. et al. A new class of chiral materials that host magnetic skyrmions beyond room temperature. Common Nat. 67638 (2015).

    CAS Article PubMed ADS Google Scholar

  • Nayak, AK et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548561–566 (2017).

    CAS Article PubMed ADS Google Scholar

  • Karube, K. et al. Room temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry. Nat. Matter. 20335–340 (2021).

    CAS Article PubMed ADS Google Scholar

  • Hayami, S., Ozawa, R. & Motome, Y. Effective bilinear-biquadratic model for non-coplanar ordering in traveling magnets. Physical. Rev. 95224424 (2017).

    ADS Google Scholar Article

  • Hayami, S. & Motome, Y. Square skyrmion crystal in centrosymmetric traveling magnets. Physical. Rev. 103024439 (2021).

    CAS ADS Google Scholar Article

  • Martin, I. & Batista, CD Chiral magnetic ordering driven by traveling electrons and spontaneous quantum Hall effect in triangular lattice models. Physical. Rev. 101156402 (2008).

    PubMed ADS Google Scholar Article

  • Okubo, T. et al. Multiple-q states and the skyrmion lattice of the Heisenberg triangular lattice antiferromagnet under magnetic fields. Physical. Rev. 108017206 (2012).

    PubMed ADS Google Scholar Article

  • Leonov, AO & Mostovoy, M. Multiply periodic states and isolated skyrmions in a frustrated anisotropic magnet. Common Nat. 68275 (2015).

    CAS Article PubMed ADS Google Scholar

  • Wang, Z. et al. Meron, skyrmion and vortex crystals in centrosymmetric tetragonal magnets. Physical. Rev. 103104408 (2021).

    CAS ADS Google Scholar Article

  • Bouaziz, J. et al. Fermi surface origin of skyrmion lattices in rare earth centrosymmetric intermetallics. Physical. Rev. 128157206 (2022).

    CAS Article PubMed ADS Google Scholar

  • Kurumaji, T. et al. Skyrmion lattice with a giant topological Hall effect in a frustrated triangular lattice magnet. Science 365914–918 (2019).

    CAS Article PubMed ADS Google Scholar

  • Khanh, N.D. et al. Nanometric square skyrmion lattice in a centrosymmetric tetragonal magnet. Nat. Nanotechnology. 15444–449 (2020).

    CAS Article PubMed ADS Google Scholar

  • Hirschberger, M. et al. Skyrmion phase and competing magnetic orders in a respiratory Kagomé network. Common Nat. 105831 (2019).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Kaneko, K. et al. Single helical magnetic order and field-induced phase in the EuPtSi trillium lattice antiferromagnet. J. Physics. Soc. Japan 8813702 (2019).

    Google Scholar Article

  • Yasui, Y. et al. Imaging the coupling between traveling electrons and localized moments in the GdRu centrosymmetric skyrmion magnettwoYestwo. Common Nat. 115925 (2020).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Khanh, N.D. et al. Multiple ZoologyP spin textures in a centrosymmetric tetragonal magnet with roaming electrons. Ave. Ciência. 92105452 (2022).

    Google Scholar Article

  • Takagi, R. et al. Square and rhombic lattices of magnetic skyrmions in a centrosymmetric binary compound. Common Nat. 131472 (2022).

    Article CAS PubMed PubMed Central ADS Google Scholar

  • Li, Z. et al. Discovery of near-room-temperature topological magnetic textures in TbMn quantum magnet6Sn6. Av. Matter. 352211164 (2023).

    CAS Google Scholar Article

  • Garnier, A., Gignoux, D., Schmitt, D. & Shigeoka, T. Giant magnetic anisotropy in tetragonal GdRutwoGetwo and GdRutwoYestwo. Physical. B 22280–86 (1996).

    CAS ADS Google Scholar Article

  • Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Physical. Rev. 102186602 (2009).

    CAS Article PubMed ADS Google Scholar

  • Nagaosa, N. et al. Anomalous Hall effect. Rev. Mod. Physics. 821539 (2010).

    ADS Google Scholar Article

  • Zadorozhnyi, A. & Dahnovsky, Y. Topological Hall effect in three-dimensional centrosymmetric magnetic skyrmion crystals. Physical. Rev. 107054436 (2023).

    CAS ADS Google Scholar Article

  • Adams, T. et al. Long-range crystalline nature of the skyrmion lattice in MnSi. Physical. Rev. 107217206 (2011).

    CAS Article PubMed ADS Google Scholar

  • Blume, M. in Resonant Anomalous Scattering of X-rays (eds. Materlik, G. et al.) 495–512 (Elsevier, 1994).

  • Hayami, S. Multiple skyrmion crystal phases by traveling frustration in centrosymmetric tetragonal magnets. J. Physics. Soc. Japan 91023705 (2022).

    ADS Google Scholar Article

  • Peng, L. et al. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnology. 15181–186 (2020).

    CAS Article PubMed ADS Google Scholar

  • Jena, J. et al. Observation of fractional spin textures in a Heusler material. Common Nat. 111115 (2020).

    Article PubMed PubMed Central ADS Google Scholar

  • Zheng, F. et al. Experimental observation of chiral magnetic bobbers in FeGe type B20. Nat. Nanotechnology. 13451–455 (2018).

    CAS Article PubMed ADS Google Scholar

  • Oike, H. et al. Interaction between topological and thermodynamic stability in a metastable magnetic skyrmion lattice. Nat. Physics. 1262–66 (2016).

    CAS Google Scholar Article

  • Itoh, S. et al. High Resolution Chopper Spectrometer (HRC) at J-PARC. Core. Instrument. Physics Methods. Res. A 63190–97 (2011).

    CAS ADS Google Scholar Article

  • Azuah, RT et al. DAVE: a comprehensive software suite for reducing, visualizing, and analyzing low-energy neutron spectroscopic data. J.Res. Inst.Natl. Stand up. Technology. 114341–358 (2009).

    CAS Article PubMed PubMed Central Google Scholar

  • Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystalline, volumetric and morphological data. J. Appl. Crystallogr. 441272–1276 (2011).

    CAS ADS Google Scholar Article

  • Leave a Reply

    Your email address will not be published. Required fields are marked *