April 13, 2024

Light-induced electronic polarization in antiferromagnetic Cr2O3

  • Powell, R. Symmetry, Group Theory and Physical Properties of Crystals (Springer, 2010).

  • Kivelson, S. A., Fradkin, E. & Emery, V. Liquid crystal electronic phases of a doped Mott insulator. Nature 393550–553 (1998).

    CAS Google Scholar Article

  • Lilly, MP et al. Evidence for an anisotropic state of two-dimensional electrons at high Landau levels. Physical. Rev. 82394–397 (1999).

    CAS Google Scholar Article

  • Feldman, BE et al. Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354316–321 (2016).

    CAS Article PubMed Google Scholar

  • Borzi, R. et al. Formation of a nematic fluid at high fields in Sr3rutwoO7 in high magnetic fields. Science 315214–217 (2007).

    CAS Article PubMed Google Scholar

  • Harter, J. et al. An electronic nematic phase transition that breaks parity in the spin-orbit coupled metal CdtwoRetwoO7. Science 356295–299 (2017).

    CAS Article PubMed Google Scholar

  • Wu, J. et al. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547432–435 (2017).

    CAS Article PubMed Google Scholar

  • Chu, J. et al. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337710–712 (2012).

    CAS Article PubMed Google Scholar

  • Wu, J. et al. Electronic nematicity in SrtwoRuO4. Process. Academic. National. Science. USA 11710654–10659 (2020).

    CAS Article PubMed PubMed Central Google Scholar

  • Ronning, F. et al. In-plane electronic symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature 548313–317 (2017).

    CAS Article PubMed Google Scholar

  • Okazaki, R. et al. Rotational symmetry breaking in the hidden order phase of URutwoYestwo. Science 331439–442 (2011).

    CAS Article PubMed Google Scholar

  • Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Matter. 2162–66 (2022).

    CAS Article PubMed Google Scholar

  • Sirica, N. et al. Tracking ultrafast photocurrents in Weyl semimetallic TaAs using THz emission spectroscopy. Physical. Rev. 122197401–197405 (2019).

    CAS Article PubMed Google Scholar

  • Shirley, J. Solution of the Schrodinger equation with a time-periodic Hamiltonian. Physical. Rev. 138B979–987 (1965).

    Google Scholar Article

  • Oka, T. & Kitamura, S. Floquet quantum materials engineering. Anu. Rev. Condens. Physical Matter. 10387–408 (2019).

    Google Scholar Article

  • Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Science. Ave. twoe1501524 (2016).

    Article PubMed PubMed Central Google Scholar

  • Kimel, A. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435655–657 (2005).

    CAS Article PubMed Google Scholar

  • Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Physical. Rev. 105077402 (2010).

    PubMed Google Scholar Article

  • Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Physical. Rev. 95174407 (2017).

    Google Scholar Article

  • Pershan, PS, van der Ziel, JP and Malmstrom, LD Theoretical discussion of the inverse Faraday effect, Raman scattering and related phenomena. Physical. Rev. 143574–583 (1966).

    CAS Google Scholar Article

  • Shan, J. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600235–239 ​​(2021).

    CAS Article PubMed Google Scholar

  • Sie, E. et al. Valley selective optical Stark effect in monolayer WStwo. Nat. Matter. 14290–294 (2015).

    CAS Article PubMed Google Scholar

  • Sie, E. et al. Valley-exclusive large Bloch-Siegert change in monolayer WStwo. Science 3551066–1069 (2017).

    CAS Article PubMed Google Scholar

  • Wang, Y. et al. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342453–457 (2013).

    CAS Article PubMed Google Scholar

  • Mahmood, F. et al. Selective scattering between Floquet-Bloch and Volkov states in a topological insulator. Nat. Physics. 12306–310 (2016).

    CAS Google Scholar Article

  • McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Physics. 1638–41 (2020).

    CAS Article PubMed Google Scholar

  • Boyd, R. Nonlinear Optics (Academic Press, 2020).

  • Bass, M. et al. Optical rectification. Physical. Rev. 9446–448 (1962).

    CAS Google Scholar Article

  • Kaplan, D., Holder, T. & Yan, B. Non-vanishing subgap photocurrent as a probe of lifelong effects. Physical. Rev. 125227401 (2020).

    CAS Article PubMed Google Scholar

  • Fiebig, M., Pavlov, V. & Pisarev, R. Second harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Op. Soc. Sou. B 2296–118 (2005).

    CAS Google Scholar Article

  • Fiebig, M. et al. Second harmonic generation and magnetic dipole-electric dipole interference in antiferromagnetic CrtwoO3. Physical. Rev. 732127–2130 (1994).

    CAS Article PubMed Google Scholar

  • Fiebig, M., Fröhlich, D., Sluyterman, G. & Pisarev, R. V. Domain topography of antiferromagnetic CrtwoO3 by the generation of second harmonic. Appl. Physical. Let’s go. 662906–2909 (1995).

    CAS Google Scholar Article

  • Satoh, T. et al. Ultrafast spin and network dynamics in antiferromagnetic CrtwoO3. Physical. Rev. 75155406 (2007).

    Google Scholar Article

  • Satoh, T. et al. Time-resolved demagnetization in CrtwoO3 by phase-sensitive second harmonic generation. Physical. Rev. 3101604–1606 (2007).

    CAS Google Scholar

  • Sala, V. et al. Resonant optical control of the structural distortions that drive ultrafast demagnetization in CrtwoO3. Physical. Rev. 94014430 (2015).

    Google Scholar Article

  • Birs, R. Symmetry and Magnetism (North Holland, 1966).

  • Muthukumar, V., Valentí, R. & Gros, C. Microscopic model of nonreciprocal optical effects in CrtwoO3. Physical. Rev. 752766–2769 (1995).

    CAS Article PubMed Google Scholar

  • Muto, M. et al. Magnetoelectric and second harmonic spectra in antiferromagnetic CrtwoO3. Physical. Rev. 579586–9607 (1998).

    CAS Google Scholar Article

  • Muthukumar, V., Valentí, R. & Gros, C. Theory of non-reciprocal optical effects in antiferromagnets: the case of CrtwoO3. Physical. Rev. 54433–440 (1996).

    CAS Google Scholar Article

  • Tanabe, Y., Fiebig, M. and Hanamura, E. in Magneto-optics (eds Sugano, S. & Kojima, N.) 107–136 (Springer, 1999).

  • Xinshu, Z. Light-induced electronic polarization in antiferromagnetic CrtwoO3. Zenodo https://doi.org/10.5281/zenodo.10674665 (2024).

  • Leave a Reply

    Your email address will not be published. Required fields are marked *