April 13, 2024

Connecting shear flow and vortex matrix instabilities in annular atomic superfluids

  • Charru, F. Hydrodynamic instabilities (Cambridge Univ. Press, 2011).

  • von Helmholtz, H. Über discontinuierliche Flüssigkeits-Bewegungen [On the discontinuous movements of fluids]. Monads. Königl. Preuss. Akad. He knows. Berlin 23215–227 (1868).

  • Thomson, W. XLVI. Hydrokinetic solutions and observations. London. Edinb. Dub. Philos. Mag. J. Science. 42362–377 (1871).

    Google Scholar Article

  • Rayleigh, L. On the stability or instability of certain fluid motions. Process. London Mathematics. Soc. s1-1157–72 (1879).

  • Drazin, PG and Reid, WH Hydrodynamic Stability 1–31 (Cambridge Univ. Press, 2004).

  • Klaassen, GP & Peltier, WR The onset of turbulence in finite-amplitude Kelvin-Helmholtz waves. J. Fluid Mechanics. 1551–35 (1985).

  • Mashayek, A. & Peltier, WR The ‘zoo’ of secondary instabilities precursors to the stratified shear flow transition. Part 2 The influence of stratification. J. Fluid Mechanics. 70845–70 (2012).

  • Thorpe, SA Transition phenomena and turbulence development in stratified fluids: a review. J. Geophysics. Res. 925231–5248 (1987).

  • Thorpe, SA On the Kelvin – Helmholtz route for turbulence. J. Fluid Mechanics. 7081–4 (2012).

  • Reynolds, O. XXIX. An experimental investigation of the circumstances which determine whether the movement of water will be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R.Soc. London. 174935–982 (1883).

  • Thorpe, SA A method for producing shear flow in a stratified fluid. J. Fluid Mechanics. 32693–704 (1968).

  • Kent, GI Transverse Kelvin-Helmholtz instability in a rotating plasma. Physical. Fluids 122140–2151 (1969).

  • Shearer, E. & Früh, W.-G. Kelvin-Helmholtz instability in a continuously forced shear flow. Physical. Chemical. Earth B 24487–492 (1999).

  • Bennemann, K.-H. & Ketterson, J.B. New Superfluids Vol. 2 (Oxford Univ. Press, 2014).

  • Korshunov, SE Analogue of the Kelvin-Helmholtz instability on a free surface of a superfluid liquid. J. Exp. Theory. Physical. 75423–425 (2002).

  • Volovik, GE On the Kelvin-Helmholtz instability in superfluids. J. Exp. Theory. Physical. 75418–422 (2002).

  • Takeuchi, H., Suzuki, N., Kasamatsu, K., Saito, H. & Tsubota, M. Kelvin-Helmholtz quantum instability in phase-separated two-component Bose-Einstein condensates. Physical. Rev. 81094517 (2010).

    ADS Google Scholar Article

  • Suzuki, N., Takeuchi, H., Kasamatsu, K., Tsubota, M. & Saito, H. Crossover between Kelvin-Helmholtz and counter-superflow instabilities in two-component Bose-Einstein condensates. Physical. Rev. 82063604 (2010).

    ADS Google Scholar Article

  • Lundh, E. & Martikainen, J.-P. Kelvin-Helmholtz instability in two-component Bose gases in a lattice. Physical. Rev. 85023628 (2012).

    ADS Google Scholar Article

  • Kokubo, H., Kasamatsu, K. & Takeuchi, H. Formation of Kelvin-Helmholtz quantum instability patterns in binary superfluids. Physical. Rev. 104023312 (2021).

    ADS MathSciNet Google Scholar Article

  • Blaauwgeers, R. et al. Shear flow and Kelvin-Helmholtz instability in superfluids. Physical. Rev. 89155301 (2002).

    ADS Google Scholar Article

  • Finne, AP et al. Dynamics of vortices and interfaces in superfluid 3He. Rep. Physics. 693157–3230 (2006).

  • Mukherjee, B. et al. Crystallization of bosonic quantum Hall states in a spinning quantum gas. Nature 60158–62 (2022).

    Google Scholar Article

  • Baggaley, AW & Parker, NG Kelvin–Helmholtz instability in a single-component atomic superfluid. Physical. Rev. 97053608 (2018).

    ADS Google Scholar Article

  • Giacomelli, L. & Carusotto, I. Kelvin-Helmholtz interaction and superradiant instabilities of an array of quantized vortices in a two-dimensional Bose-Einstein condensate. SciPost Physics. 14025 (2023).

    ADS MathSciNet Google Scholar Article

  • Aref, H. On the equilibrium and stability of a row of point vortices. J. Fluid Mechanics. 290167–181 (1995).

  • Havelock, T. LII. The stability of the movement of rectilinear vortices in the formation of rings. London. Edinb. Dub. Philos. Mag. J. Science. 11617–633 (1931).

  • Kwon, W.J. et al. Sound emission and annihilations in a programmable quantum vortex collider. Nature 60064–69 (2021).

    Google Scholar Article

  • Del Pace, G. et al. Printing persistent currents in tunable fermionic rings. Physical. Rev. 12041037 (2022).

    Google Scholar

  • Eckel, S., Jendrzejewski, F., Kumar, A., Lobb, C.J. & Campbell, G.K. Interferometric measurement of the current-phase relationship of a superfluid weak link. Physical. Rev. 4031052 (2014).

    Google Scholar

  • Kanai, T., Guo, W. & Tsubota, M. Fusion of rotating Bose-Einstein condensates. J. Bass. Temperature. Physical. 19537 (2019).

    ADS Google Scholar Article

  • Thorpe, SA The axial coherence of Kelvin-Helmholtz waves. QJR Meteorol. Soc. 1281529–1542 (2002).

  • Warren, B.E. X-ray diffraction 206–210 (Dover, 1990).

  • Griffin, A., Nikuni, T. and Zaremba, E. Bose condensate gases at finite temperatures (Cambridge Univ. Press, 2009).

  • Villermaux, E. On the role of viscosity in shear instabilities. Physical. Fluids 10368–373 (1998).

    ADS MathSciNet Google Scholar Article

  • Betchov, R. & Szewczyk, A. Stability of a shear layer between parallel flows. Physical. Fluids 61391–1396 (1963).

    ADS Google Scholar Article

  • Kopnin, NB Vortex dynamics and mutual friction in superconductors and Fermi superfluids. Rep. Physics. 651633 (2002).

    ADS Google Scholar Article

  • Sonin, E.B. Quantized vortex dynamics in superfluids 43–77; 213–267 (Cambridge Univ. Press, 2015).

  • Silaev, MA Universal dissipation mechanism in Fermi superfluids at ultralow temperatures. Physical. Rev. 108045303 (2012).

    ADS Google Scholar Article

  • Barresi, A., Boulet, A., Magierski, P. & Wlazłowski, G. Dissipative dynamics of quantum vortices in fermionic superfluid. Physical. Rev. 130043001 (2023).

    ADS Google Scholar Article

  • Allen, A.J., Zaremba, E., Barenghi, C.F. & Proukakis, N.P. Observable vortex properties in finite-temperature bose gases. Physical. Rev. 87013630 (2013).

    ADS Google Scholar Article

  • Mehdi, Z., Hope, JJ, Szigeti, SS & Bradley, AS Mutual friction and diffusion of two-dimensional quantum vortices. Physical. Rev. 5013184 (2023).

    Google Scholar Article

  • Sergeev, YA Mutual friction in bosonic superfluids: a review. J. Low temperature. Physical. https://doi.org/10.1007/s10909-023-02972-4 (2023).

  • Pikovsky, A. and Politi, A. Lyapunov exponents (Cambridge Univ. Press, 2016).

  • Babiano, A., Boffetta, G., Provenzale, A. & Vulpiani, A. Chaotic advection in point vortex models and two-dimensional turbulence. Physical. Fluids 62465 (1994).

    ADS MathSciNet Google Scholar Article

  • Haskell, B. & Melatos, A. Pulsar fault models. International J.Mod. Physical. D 241530008 (2015).

    ADS MathSciNet Google Scholar Article

  • Price, DJ & Rosswog, S. Production of ultrastrong magnetic fields in neutron star mergers. Science 312719 (2006).

    ADS Google Scholar Article

  • Sachkou, Y.P. et al. Coherent vortex dynamics in a strongly interacting superfluid on a silicon chip. Science 3661480–1485 (2019).

  • Simula, T., Davis, M.J. & Helmerson, K. Emergence of order from turbulence in an isolated planar superfluid. Physical. Rev. 113165302–165302-5 (2014).

  • Johnstone, SP et al. Evolution of large-scale flow from turbulence in a two-dimensional superfluid. Science 3641267 (2019).

    ADS MathSciNet Google Scholar Article

  • Gauthier, G. et al. Clusters of giant vortices in a two-dimensional quantum fluid. Science 3641264–1267 (2019).

  • Reeves, MT et al. Turbulent relaxation to equilibrium in a two-dimensional quantum vortex gas. Physical. Rev. 12011031–011031-18 (2022).

  • Heyl, M. et al. Vortex dynamics in the two-dimensional BCS–BEC intersection. Common Nat. 136986 (2022).

    ADS Google Scholar Article

  • Kobyakov, D., Bezett, A., Lundh, E., Marklund, M. & Bychkov, V. Turbulence in binary Bose-Einstein condensates generated by highly nonlinear Rayleigh-Taylor and Kelvin-Helmholtz instabilities. Physical. Rev. 89013631 (2014).

    ADS Google Scholar Article

  • Barenghi, CF, Skrbek, L. & Sreenivasan, KR Introduction to quantum turbulence. Process. Academic. National. Science. USA. 1114647 (2014).

    ADS MathSciNet Google Scholar Article

  • Henn, EAL, Seman, JA, Roati, G., Magalh aes, KMF & Bagnato, VS Emergence of turbulence in an oscillating Bose-Einstein condensate. Physical. Rev. 103045301–045301-4 (2009).

  • Navon, N., Gaunt, AL, Smith, R.P. & Hadzibabic, Z. Emergence of a turbulent cascade in a quantum gas. Nature 53972–75 (2016).

    Google Scholar Article

  • Neely, TW et al. Characteristics of two-dimensional quantum turbulence in a compressible superfluid. Physical. Rev. 111235301 (2013).

    ADS Google Scholar Article

  • Leave a Reply

    Your email address will not be published. Required fields are marked *